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Abstract We propose a framework for resilient autonomous navigation in percep-
tually challenging unknown environments with mobility-stressing elements such as
uneven surfaces with rocks and boulders, steep slopes, negative obstacles like cliffs
and holes, and narrow passages. Environments are GPS-denied and perceptually-
degraded with variable lighting from dark to lit and obscurants (dust, fog, smoke).
Lack of prior maps and degraded communication eliminates the possibility of prior
or off-board computation or operator intervention. This necessitates real-time on-
board computation using noisy sensor data. To address these challenges, we propose
a resilient architecture that exploits redundancy and heterogeneity in sensing modal-
ities. Further resilience is achieved by triggering recovery behaviors upon failure.
We propose a fast settling algorithm to generate robust multi-fidelity traversability
estimates in real-time. The proposed approach was deployed on multiple physical
systems including skid-steer and tracked robots, a high-speed RC car and legged
robots, as a part of Team CoSTAR’s effort to the DARPA Subterranean Challenge,
where the team won 2nd and 1st place in the Tunnel and Urban Circuits, respectively.
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(e) Negative Obstacles (f) Mud (g) Stairs (Tracked)

Fig. 1: Mobility-stressing components at test sites: a) Arch Coal Mine, WV, b,c,e)
Powerplant in Satsop Business Park, WA, d) Mars Yard, NASA-JPL, CA,and f) Beck-
ley Exhibition Mine, WV. Robots demonstrated long-range autonomous navigation
capability, such as in Arch Mine (1100m), Beckley Exhibition Mine (1000m).

Supplementary material: A video is available at https://youtu.be/cjxN2Tu-qVY

1 Introduction

Autonomous off-road navigation over extreme terrains and perceptually-degraded
environments has a wide range of applications from space exploration [1] to terrestrial
search and rescue, including subterranean (tunnels, mines, caves) exploration [2].
This poses a set of key challenges:

[C1] Negotiating mobility-stressing elements such as rough, high-sloped, and clut-
tered terrains with stairs and narrow passages while avoiding hazards such as
rocks, overhangs, and negative obstacles including pits, cliffs, etc. (Fig. 1).

[C2] Perceptually degraded GPS-denied environments require the robots to cope
with large uncertainties and degraded sensing due to presence of obscurants
(dust, fog, smoke), low-light conditions, lack of features/landmarks, motion blur
and issues with dynamic range (Fig. 4).

[C3] Resilient self-reliant operations in comms-denied environment without any
operator intervention are required due to degraded communication. The robot is
also required to return back to communication range if the mission is infeasible
or violates the desired risk posture.

[C4] On-board operations in unknown environments at high-speeds are required
since lack of prior maps and degraded communications eliminate any possibil-
ity of prior or off-board processing and finite mission time constraints make
operations at maximum speed supported by hardware, desired.

[C5] Scalability to different environments and robots: such as tracked, wheeled and
legged which have disparate speed and traversability abilities (Table. 1).

Related work: Papadakis [3] summarises the prior work on traversability esti-
mation by classifying them in proprioceptive methods and exteroceptive methods.

[4] performs fast, approximate settling by computing upper and lower bounds
for the settled pose. In [5], the authors use principal component analysis on the
local surface to estimate the settled pose. The settling algorithms can operate on
instantaneous scans [6] which are robust to localization noise or by fusing multiple
scans [7] that provide a longer range.
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The work in [8] runs an iterative algorithm to estimate the contact points between
an articulated, tracked robot and the terrain mesh [9] for settling. [10] proposes a
computationally fast method to run a physics simulation that drops the robot under
the influence of gravity onto the surface, which is represented as B-Patch [11].

[12] provides a probabilistic formulation by extending a discrete elevation map
[13] to account for uncertainty in localization.

The objective of this work is to develop a holistic solution that can address all
challenges [C1]-[C5], simultaneously.

Contributions:

1. To address these challenges, we propose a Resilient Multi-fidelity Architecture
(RMF) design which shows how these different prior works can be combined to
form a resilient end-to-end system. RMF leverages a multi-fidelity traversability
estimator which generates accurate estimates in short-range by using instanta-
neous scans and approximate estimates in mid-range and long-range by using
a temporal map. Furthermore, it is designed to eliminate single-point failures
and achieve further resiliency by exploiting redundancy and heterogeneity of
different sensing modalities [C2].

2. We propose a fast settling algorithm that estimates traversability in extreme
terrains [C1] for multiple robot types [C5] in real time [C4].

3. We propose a sequence of field-tested autonomous recovery behaviors to elimi-
nate human interventions [C3].

4. We push the boundaries of state-of-practice and demonstrate the proposed so-
lution through deployment on a variety of ground vehicles including wheeled
(Ackermann and skid-steered), tracked, and legged systems, by conducting in-
tense field testing in various subterranean environments (Fig. 1, Table 1).

The proposed architecture was successfully deployed by Team CoSTAR1 as our
local navigation solution for large-scale, subterranean exploration and mapping mis-
sions during the DARPA Subterranean (SubT) Challenge2. Together with other
autonomy modules for large-scale localization and mapping [14], resilient state
estimation [15] and perception-aware global planning [16], it formed the overall
autonomy solution called NeBula (Networked Belief-aware Perceptual Autonomy)
[17] that led to Team CoSTAR winning 2nd place in the Tunnel Circuit and 1st place
in the Urban Circuit of the SubT Challenge.

2 Methodology

We push the boundaries of the state-of-practice by enabling on-board navigation in
complex rough terrain under severe perceptual, computational and real-time con-
straints. In this section, we discuss an architecture and supporting techniques of the
proposed system.

1 https://costar.jpl.nasa.gov/
2 https://www.subtchallenge.com/
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2.1 Resilient Multi-fidelity Architecture

Fig. 2: Resilient Multi-Fidelity (RMF) Architecture.

Heterogeneity and Redundancy of Sensors to Eliminate Single-Point Fail-
ures: Fig. 2 shows our pipeline to generate the multi-fidelity traversability cost
estimates for motion planning. To design a resilient system capable of extreme ter-
rain navigation, we start by building a stack of sensors with heterogeneous modalities
such as lidar, radar, thermal and visible cameras, etc. Further redundancy is achieved
by adding multiple sensors of the same modality, pointing in different directions to
achieve larger coverage and eliminate single point failures.

Heterogeneous Resilient State Estimation: These sensors signals are process by
our estimation module HeRO (Heterogeneous Redundant Odometry) [15] that further
adds additional analytical redundancy by running multiple odometry algorithms [18],
[19], [20], performs confidence checks to quantify uncertainty and finally produces
robust pose estimates by multiplexing to the most robust odometry source. This
provides resiliency to state estimation failures which are usually triggered by many
factors like dust, low-light conditions, lack of features/landmarks, motion blur and
issues with dynamic range.

Robust Multi-Fidelity Traversability Estimation in Real-time: To achieve fur-
ther robustness to noise in perception, we perform traversability estimation at three
different levels. First, a high-resolution short-range traversability costmap is con-
structed using the most recent depth scan which does not suffer from localization
noise. This allows robust high-fidelity traversability estimation by preventing the
propagation of localization noise into the planning and control layers. Second, mid-
resolution mid-range planner uses a moving window of last 𝑁 depth scans for
traversability estimation which allows coverage over a larger region.

While these depth estimates are sensitive to localization noise, the traversability
estimation is less susceptible to this noise since it is performed at a lower fidelity
than the high-resolution costmap. Specifically, features which are within the mag-
nitude of perception noise are ignored (e.g. rocks smaller than 30 cm). Third, the
low-resolution long-range costmap uses an occupancy belief grid that maintains a
probability distribution of occupancy which is a sufficient statistic of all past depth
measurements [21]-[22]. This allows for incorporating highly noisy yet informative
measurements at long ranges. The low-resolution costmap achieves robustness to
this noise by estimating traversability at the least fidelity (e.g. only detecting large
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obstacles such as walls). This multi-fidelity approach is an efficient and practical way
of handling perception noise without adding too much computational burden. In the
next subsection, we describe the details of the settling algorithm used to estimate
traversability.

Real-time On-board Planning and Control: To achieve real-time performance
with limited on-board computation, the planning and controls problems is decoupled
into several hierarchical layers. The mission planner keeps track of high-level states
such as battery status, time remaining, coverage goals, etc. [23] and generates a
desired goal for the long-range planner. The long-range planner finds a path on a long-
range roadmap (0-10 km range) and generates a goal for the mid-range planner. The
mid-range planner performs search on the mid-resolution costmap (0-50 m range) to
obtain a geometric path to this goal which is tracked by the local kinodynamic planner
by generating an optimal trajectory from a set of motion primitives prioritized by
using the high-resolution costmap (0-10 m range). Finally, the low-level tracking
controller tracks this kinodynamic trajectory. [17] describes the details of how this
was implemented for a legged robot.

Resilience at System-level: Note that while the long-range and mid-range planner
can produce intermittent unsafe goals due to presence of localization errors, our
system is still resilient to these failures since the short-range planner closes the
loop using only instantaneous or near-instantaneous scans (past <1 second), thus
eliminating past errors in localization. The health monitor asynchronously monitors
the system state to trigger recovery behaviors when failures are detected.

2.2 Settling-Based Traversability Analysis

This section describes how traversability is assessed over a point cloud for a single
query pose. The traversability assessment for a query pose consists of three steps.
First, the input surface point cloud is segmented into ground and obstacle points.
Second, the robot is virtually settled on a ground point cloud at a given query pose.
Third, various traversability metrics are computed from the settled pose, surface
point cloud, and its interaction.

The algorithm begins by first segmenting the surface point cloud into ground
and obstacle points. In rough terrain (which is a target of this paper), the boundary
between ground and obstacles is vague. To have a consistent method across different
environments, we set a following definition based on the mechanical capability of
the robot platform: ground points are surface points of an area where the robot can
mechanically drive, and obstacle points are remainder points that locate above the
ground points. Multiple implementations are possible for this segmentation task. We
employed a simple geometric approach based on line-fitting [24].

After extracting the ground point cloud, a robot model is placed on arbitrary
locations on the point cloud to evaluate traversability. The process is depicted in
Fig. 3. A settling algorithm is used to solve for an 𝑆𝐸 (3) pose of the robot given
an 𝑆𝐸 (2) query pose. Different settling methods should be considered based on
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Fig. 3: Settling-based traversability: a) settling, b) body collision model, c) stability
check, d) collision detection and negative obstacle detection using low point density.

the platform types. One approximation method that is applicable to many ground
vehicles is to fit a plane using points under the robot footprint. The normal of fitted
plane is used to approximately estimate the orientation of settled pose and derive the
placement of the body collision model.

Once a full pose is determined for a query pose via settling, the following metrics
are computed using the pose and point cloud. The final traversability is evaluated
based on the combination of these metrics:

• Tip-over stability: The robot must avoid steep slopes, where it could tip over.
In theory, the robot’s footprint and orientation highly influence the stability of
the robot. In [8], the authors list several stability metrics that can be used for
stability checking. However, for robots whose footprint have an aspect ratio close
to one, one can simplify the stability analysis by applying a threshold on the
angle between the surface normal and the gravity vector. This stability check is
depicted in Fig. 3c.

• Positive obstacles: Positive obstacles, such as rocks below the robot’s belly,
overhangs, walls, or larger obstacles, may collide with robot’s body. The surface
points that interfere with the robot’s collision model are counted, and if the
number of colliding points is larger than a threshold, that location is marked as
untraversable, see Fig. 3d.

• Negative obstacles: Negative obstacles include cliffs and holes, which can
severely damage the vehicle if they are not avoided. We create two categories
based on sensor coverage. If the shape of negative obstacle is fully visible, the
previous slope and collision checks are applied to evaluate if it is safe to drive.
If the negative space is occluded or not visible, we check the density of points
around the negative space. If too few ground points are available, we assume the
worst case and mark the area as untraversable.
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By changing the size of the robot bounding box used in the settling algorithm,
we obtain different fidelities of traversability estimates. A larger bounding box will
generate higher fidelity estimates which can detect hazards such as very small rocks,
while a smaller bounding box will result in lower fidelity estimates to detect large
hazards such as walls. A larger size will be more sensitive to localization noise and
hence is only applied to near-instantaneous measurements, whereas a smaller size is
robust to localization noise and can be applied to temporally fused depth maps.

2.3 Recovery Behaviors

In the real world, failures are unavoidable. Some failures (e.g., mechanical fail-
ure) are fatal, while others (e.g., algorithmic failure) can potentially be resolved
autonomously, allowing the robot to continue the mission. Hence, as a last line-
of-defense, we design behaviors to recover the system from non-fatal failures. The
following recovery behaviors are implemented and triggered when relevant failures
are detected:

• Clear the map and start building it from scratch.
• Backtrack the traversed path.
• Move the robot in an open loop to the direction of maximum clearance.
• Trigger wall following (which does not require global localization).

3 Experiments

The proposed system has been extensively tested and validated in many differ-
ent natural and man-made environments, including coal/gold mines, power plants,
school/office buildings, and the JPL Mars Yard; as shown in Fig. 1. The navigation
system was successfully used by Team CoSTAR at the DARPA SubT Challenge
Circuit events (Tunnel and Urban), where the robots autonomously explored more
than a kilometer in each run.

3.1 Hardware and Software

The experimental platforms are shown at the top of Table 1. The platforms were
heavily customized with a heterogeneous sensor suite, computing units, batter-
ies and speed controllers. The odometry sources consist of wheel-inertial odom-
etry (WIO), lidar-inertial odometry (LIO), visual-inertial-odometry (VIO), thermal-
inertial-odometry (TIO) and kinematic-inertial-odometry (KIO). HeRO [15] moni-
tors the different inputs and selects the most reliable source to produce a continuous
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Specification Skid-steer1 Tracked3 Ackermann2 Quadruped1

Model Husky A200 Telemax Pro X-Maxx Spot
Max. speed 1.0 m/s 1.1 m/s 22 m/s 1.6 m/s

Local planner DWA [25] DWA [25] TEB [26] Proprietary
Controller PID PID PID Proprietary

Distance traveled 5.98 km 0.76 km 0.39 km 2.85 km
Avg. speed during traverse 0.93 m/s 0.57 m/s 0.83 m/s 0.65 m/s

Autonomous recoveries / km 6.9 0.16 0.0 13.0
Critical failures / km 0.2 0.0 0.0 1.1

Table 1: Specification of the different robots. Superscript on the robot type indi-
cates location/source of data used for computing statistics: 1DARPA SubT Urban
Competition, 2DAPRA SubT Tunnel Competition, 3Beckley Exhibition Coal Mine,
WV.

state estimate under perceptually degraded conditions. The proposed architecture is
implemented with the ROS navigation framework3.

3.2 Results

The internals of the proposed algorithm are visualized in Figure 4, for a mission
in the Arch Coal Mine in Beckley, WV. The costmaps for different traversability
challenges, including positive obstacles, negative obstacles and rubble, are shown
in Figure 5 for the wheeled platform A. Figure 6 visualizes the costmap for the
Ackerman platform in a gold mine, for the quadruped in the power plant and for the
tracked platform on stairs. With a modified settling algorithm [4], we were able to
demonstrate autonomous stair climbing with the tracked platform. The difference
boils down to a more conservative stability assessment that considers the attainable
worst case attitudes instead of average attitudes that result from simple plane fitting.
The addition of conservatism is motivated by the higher slope and greatly reduced
contact area, which makes stairs a very challenging terrain to drive on.

Figure 7 shows ≈ 1 hour of autonomous exploration and mapping in various
extreme environments. These environments include the locales for the DARPA Sub-
terranean Challenge. Utilizing our resilient navigation methods, both wheeled and
legged robots were able to successfully navigate autonomously and in comm-denied
environments over kilometer-range distances.

3 http://wiki.ros.org/navigation
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Fig. 4: Traversability estimation pipeline visualization showing Point Cloud from
sensors, normal vector of settled robot pose (hazards marked in red) and costmap at
Arch Coal Mine.

3.3 Lessons Learned and Future Work

The following is a summary of the lessons learnt from our intense test campaign; to
stem future research:

• Blind Spots in Sensing:
Our architecture uses instantaneous depth measurements for generating optimal
local kinodynamic trajectories in the robot’s ego frame. While this prevents any
localization noise from percolating into the costmap, it requires large number of
sensors to ensure sufficient coverage and density. Violation of this requirement
can result in false negative obstacles especially in the blind-spots of the sensors.
This problem can be mitigated with better sensor coverage or perception-aware
planning.

• Very Small Obstacles and Narrow Passages:
It is challenging to detect obstacles whose size is comparable to the noise levels
of the depth sensors. Similar challenge exists while navigating through passages
whose size is very close to the robot width. This issues can be potentially resolved
with better ground clearance and smaller width of the robot.
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Fig. 5: Left to Right: Positive Obstacles, Negative Obstacles, Rubble

Fig. 6: Left to Right: Skid-Steer in Mine, Quadruped in Power Plant, Tracked on
Stairs

Fig. 7: Extreme environments successfully explored and mapped using various
robotic platforms. From left to right: Husky in a coal mine environment, Spot
in a power plant environment, Spot in a lava-tube cave environment. Colors of points
(blue to green) indicate z height. Purple to yellow line indicates path traveled by
robot. Blue/Yellow/Green axes indicate 10m scale.

• Non-Geometric Hazards: There were a few cases where a robot was immobi-
lized due to non-geometric hazards such as mud and water. These hazards mainly
triggered slips on the ground contact points and made the wheeled robots get
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stuck and the legged robots fall. One potential solution to this problem is the use
of machine learning techniques to detect these non-geometric hazards.

4 Conclusion

A resilient solution to navigation in environments with extreme traversability and per-
ceptual conditions (Fig. 1) was proposed by leveraging a multi-fidelity traversability
estimation using a combination of instantaneous depth scans and occupancy belief
maps constructed using localization that exploited redundancy and heterogeneity in
sensing. The proposed solution was adaptive, real-time, on-board and works with-
out any prior maps or GPS. Single-point failures were further eliminated by using
health monitoring and recovery behaviors. Through intense field test campaigns, we
demonstrated that the proposed approach scales to different environments and four
different types of robots. Future work includes addressing non-geometric hazards
such as mud, dirt, etc. and testing on platforms with higher speed.
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